Publications

Full list available on Google Scholar

  1. Tackling Interpretability in Audio Classification Networks with Non-negative Matrix Factorization
    Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Gaël Richard, and Florence d’Alché-Buc
    Accepted in IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP) (available via early access, preprint on arxiv) 2023
  1. Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF
    Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Florence d’Alché-Buc, and Gaël Richard
    Advances in Neural Information Processing Systems (NeurIPS) 2022
  1. A Framework to Learn with Interpretation
    Jayneel Parekh, Pavlo Mozharovskyi, and Florence d’Alché-Buc
    Advances in Neural Information Processing Systems (NeurIPS) 2021
  1. Flexible and context-specific AI explainability: A multidisciplinary approach
    Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d’Alché-Buc, James Eagan, Winston Maxwell, Pavlo Mozharovskyi, and Jayneel Parekh
    arXiv Preprint, shorter version presented at NeHuAI@ECAI 2020
  2. Speech-to-Singing Conversion in an Encoder-Decoder Framework
    Jayneel Parekh, Preeti Rao, and Yi-Hsuan Yang
    IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020 (Oral)
  1. Deep Pairwise Classification and Ranking for Predicting Media Interestingness
    Jayneel Parekh, Harshvardhan Tibrewal, and Sanjeel Parekh
    ACM International Conference on Multimedia Retrieval (ICMR) 2018
  1. The IITB Predicting Media Interestingness System for MediaEval 2017.
    Jayneel Parekh, Harshvardhan Tibrewal, and Sanjeel Parekh
    MediaEval Workshop 2017
  1. The MLPBOON Predicting Media Interestingness System for MediaEval 2016.
    Jayneel Parekh, and Sanjeel Parekh
    MediaEval Workshop 2016