Speech-to-Singing Conversion in an Encoder-Decoder Framework

Jayneel Parekh* † Preeti Rao † Yi-Hsuan Yang § * Télécom Paris † IIT Bombay § Academia Sinica April, 2020

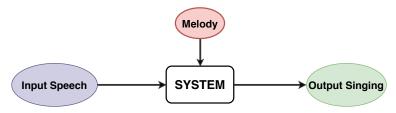
ICASSP 2020 Audio and Acoustic Signal Processing

Outline

- 1 Speech-to-Singing Formulation
- 2 Comparison with Literature
- **3** System Details
- **4** Experiments
- 5 Conclusion

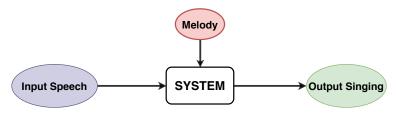
Problem Formulation

Aim: To design a system that transforms speech into a song based on a given melody.



Problem Formulation

Aim: To design a system that transforms speech into a song based on a given melody.



Desired characteristics of output

- Preserve speaker's timbre
- Preserve speech intelligibility with plausible phoneme durations.
- Follow the given melody

Motivation & Applications

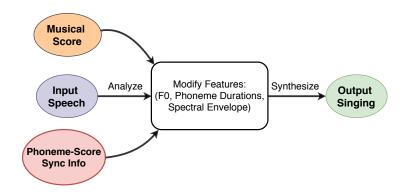
Songify

Music production

Outline

- 1 Speech-to-Singing Formulation
- 2 Comparison with Literature
- **3** System Details
- **4** Experiments
- 5 Conclusion

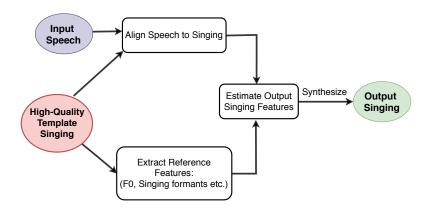
Model-based STS [Saitou et al., 2007]



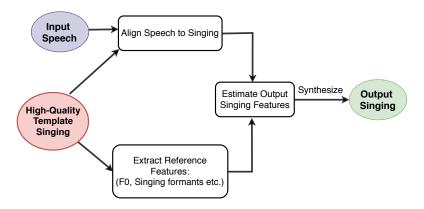
Musical score: Sequence of musical notes (pitch and duration).

Phoneme-Score Sync Info: Association of each phoneme in speech with a musical note in the score.

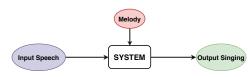
Template-based STS [Cen et al., 2012], [Gao et al., 2019]



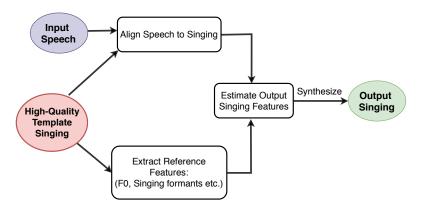
Template-based STS [Cen et al., 2012], [Gao et al., 2019]



Key difference in our formulation: Minimal input information.



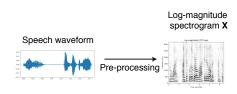
Template-based STS [Cen et al., 2012], [Gao et al., 2019]

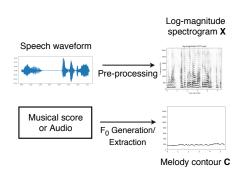


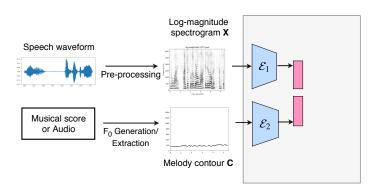
Key difference in our formulation: Minimal input information. Use Melody + Input Speech. We do not require singing templates or synchronization information. First to attempt such a transformation!

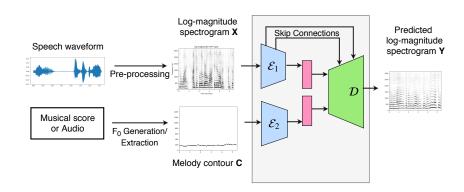
Outline

- 1 Speech-to-Singing Formulation
- 2 Comparison with Literature
- **3** System Details
- **4** Experiments
- 5 Conclusion

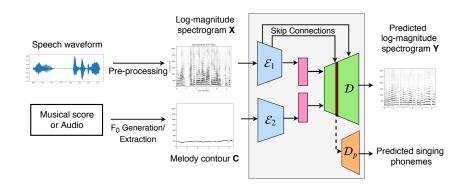








$$\mathbf{Y} = \mathcal{D}(\mathcal{E}_1(\mathbf{X}), \mathcal{E}_2(\mathbf{C}))$$

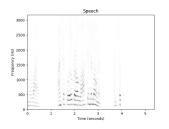


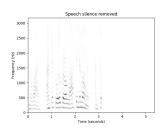
$$\mathbf{Y} = \mathcal{D}(\mathcal{E}_1(\mathbf{X}), \mathcal{E}_2(\mathbf{C}))$$

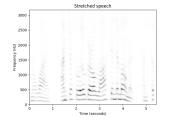
D_p for Multi Task Learning (MTL) based objective

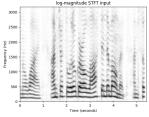
Input Pre-processing

- Silent-frame removal
- Time stretching to singing length (Phase Vocoder)
- log(1 + x) transformation on magnitude spectrogram









Network Architecture

- Adaptation of encoder-decoder network based on U-net [Ronneberger et al., 2015]
- Fully convolutional architecture with 1D convolutions.
- Skip connections between encoder \mathcal{E}_1 and decoder \mathcal{D} . Use of Instance Normalization (IN) layers before recurrent layers
- Encourage viewers to look at detailed architecture for each sub-component on our companion website.

```
https://jayneelparekh.github.io/icassp20/
```

Training

1. Loss

- MSE on predicted and true log-magnitude spectrograms
- Cross entropy loss for phoneme decoder (for frame t: c_t true phoneme, \hat{y}_t^p predicted phoneme probability distribution)

$$\mathcal{L}_{\mathsf{MTL}} = \mathcal{L}_{\mathsf{MSE}}(\mathbf{Y}, \hat{\mathbf{Y}}) + \frac{\lambda}{T} \sum_{t=1}^{T} \mathcal{L}_{\mathsf{CE}}(\hat{y}_{t}^{p}, c_{t}),$$

$$\mathcal{L}_{\mathsf{MSE}}(\textbf{Y}, \boldsymbol{\hat{\textbf{Y}}}) = ||\textbf{Y} - \mathcal{D}(\mathcal{E}_1(\textbf{X}), \mathcal{E}_2(\textbf{C}))||^2 \,,$$

$$\mathcal{L}_{\mathsf{CE}}(\hat{y}^{p}_{t}, c_{t}) = -\hat{y}^{p}_{t}(c_{t}) + \log \big(\sum_{m \in P} \exp(\hat{y}^{p}_{t}(m) \big) \,.$$

Training

1. Loss

- MSE on predicted and true log-magnitude spectrograms
- Cross entropy loss for phoneme decoder (for frame t: c_t true phoneme, \hat{y}_t^p predicted phoneme probability distribution)

$$\mathcal{L}_{\mathsf{MTL}} = \mathcal{L}_{\mathsf{MSE}}(\mathbf{Y}, \hat{\mathbf{Y}}) + \frac{\lambda}{T} \sum_{t=1}^{T} \mathcal{L}_{\mathsf{CE}}(\hat{y}_{t}^{p}, c_{t}),$$

$$\mathcal{L}_{\mathsf{MSE}}(\boldsymbol{Y},\boldsymbol{\hat{Y}}) = ||\boldsymbol{Y} - \mathcal{D}(\mathcal{E}_1(\boldsymbol{X}),\mathcal{E}_2(\boldsymbol{C}))||^2\,,$$

$$\mathcal{L}_{\mathsf{CE}}(\hat{y}^{p}_{t}, c_{t}) = -\hat{y}^{p}_{t}(c_{t}) + \log \big(\sum_{m \in P} \exp(\hat{y}^{p}_{t}(m) \big) \,.$$

2. Data augmentation

- Augmenting the training data to 2 times.
- Pitch-shifting input speech target singing unchanged.
- Amount of pitch-shift sampled uniformly at random from [-1,1] semi-tones.

Prediction Strategy

Network output (Log-magnitude spectrogram) \rightarrow Time-domain signal

- Get magnitude spectrogram via element-wise transformation $f(x) = e^x 1$
- Phase estimation using Griffin-Lim
- Modification [Wang et al., 2017]: Raise magnitude spectrogram to power 1.2 before Griffin-Lim

Outline

- 1 Speech-to-Singing Formulation
- 2 Comparison with Literature
- **3** System Details
- **4** Experiments
- 5 Conclusion

NUS Sung and Spoken Lyrics Corpus [Duan et al., 2013]

 48 recordings for 20 unique songs, 12 subjects, each subject sings & reads 4 songs.

NUS Sung and Spoken Lyrics Corpus [Duan et al., 2013]

- 48 recordings for 20 unique songs, 12 subjects, each subject sings & reads 4 songs.
- Each unique song covered by 2 or 4 singers. 19 songs for training, 1 for testing (2 recordings).

NUS Sung and Spoken Lyrics Corpus [Duan et al., 2013]

- 48 recordings for 20 unique songs, 12 subjects, each subject sings & reads 4 songs.
- Each unique song covered by 2 or 4 singers. 19 songs for training, 1 for testing (2 recordings).
- Phone-level annotation file: Start and end time of each phone.

NUS Sung and Spoken Lyrics Corpus [Duan et al., 2013]

- 48 recordings for 20 unique songs, 12 subjects, each subject sings & reads 4 songs.
- Each unique song covered by 2 or 4 singers. 19 songs for training, 1 for testing (2 recordings).
- Phone-level annotation file: Start and end time of each phone.

Input-Target Sample Generation

- Extract segments to remove silences from singing
- Generate multiple combinations of consecutive words (3 20 words).
- Refer to paper for precise details

- Baseline 1 (B1): Proposed network, MSE loss, and no melody information.
- Baseline 2 (B2): No IN layers, skip connections, MSE loss.

- Baseline 1 (B1): Proposed network, MSE loss, and no melody information.
- Baseline 2 (B2): No IN layers, skip connections, MSE loss.
- Proposed MSE (P-MSE): Proposed network, MSE loss

- Baseline 1 (B1): Proposed network, MSE loss, and no melody information.
- Baseline 2 (B2): No IN layers, skip connections, MSE loss.
- Proposed MSE (P-MSE): Proposed network, MSE loss
- Proposed MTL (P-MTL): Proposed network, MTL loss

- Baseline 1 (B1): Proposed network, MSE loss, and no melody information.
- Baseline 2 (B2): No IN layers, skip connections, MSE loss.
- Proposed MSE (P-MSE): Proposed network, MSE loss
- Proposed MTL (P-MTL): Proposed network, MTL loss
- Singing Autoencoder

- Log-Spectral Distance (LSD): Average euclidean distance between true and predicted log-spectrogram frames over time, for frequencies between 100 Hz to 3.5 kHz.
- F₀ evaluation Raw Chroma Accuracy (RCA): Determine how good is the model at preserving melody. Used RCA between predicted pitch contours of target and predicted singing.

- Log-Spectral Distance (LSD): Average euclidean distance between true and predicted log-spectrogram frames over time, for frequencies between 100 Hz to 3.5 kHz.
- F₀ evaluation Raw Chroma Accuracy (RCA): Determine how good is the model at preserving melody. Used RCA between predicted pitch contours of target and predicted singing.

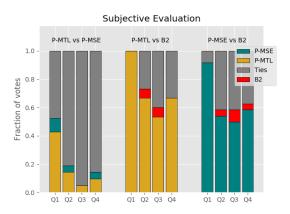
System 📢 📢	LSD (dB) ↓	RCA ↑
Baseline 1 (B1)	14.19	0.221
Baseline 2 (B2)	11.71	0.769
Proposed MSE (P–MSE)	11.22	0.829
Proposed MTL (P–MTL)	10.97	0.857
Singing Autoencoder	5.51	0.991

• Preference test for subset of systems: B2, P-MSE, P-MTL.

 Preference test for subset of systems: B2, P-MSE, P-MTL. Each participant (11 total) compared outputs of two random systems for 5 test samples

- Preference test for subset of systems: B2, P-MSE, P-MTL. Each participant (11 total) compared outputs of two random systems for 5 test samples
- Lyrics/Phoneme intelligibility (Q1), Naturalness (Q2), Melodic similarity to target (Q3) and Speaker identifiability (Q4).

- Preference test for subset of systems: B2, P-MSE, P-MTL. Each participant (11 total) compared outputs of two random systems for 5 test samples
- Lyrics/Phoneme intelligibility (Q1), Naturalness (Q2), Melodic similarity to target (Q3) and Speaker identifiability (Q4).



Qualitative Observations

Positives (for P-MTL)

- Good Melody transfer
- Fair Naturalness
- Reasonable Phoneme duration modelling and intelligibility

Limitations

- Speaker identifiability
- Relatively small dataset, low generalizability

Outline

- 1 Speech-to-Singing Formulation
- 2 Comparison with Literature
- **3** System Details
- **4** Experiments
- 5 Conclusion

Conclusion

Key takeaways:

- Use only speech and melody for output singing. First to attempt such a transformation using a ML based method that does not use singing templates or synchronization information.
- Process the time-frequency representation via a deep neural network
- Multi Task Learning based objective to improve phoneme intelligibility
- Shows capability of transformation with significant room for improvement.

Code available on GitHub!

https://github.com/jayneelparekh/sp2si-code

Companion website

https://jayneelparekh.github.io/icassp20/

Code available on GitHub! https://github.com/jayneelparekh/sp2si-code

Companion website

https://jayneelparekh.github.io/icassp20/

Thank you!